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I.  INTRODUCTION 

Excessive blast overpressures at crew stations presently restrict the 
use of several Army weapons systems.  Similarly, proving grounds often have 
to curtail operation during certain atmospheric conditions which allow blast 
focusing on populated areas. Many gun systems have muzzle devices whose use 
and effectiveness are influenced by their muzzle flow. Recently, an interest 
has arisen in the study of muzzle flash and secondary flash. These problems 
lead to the need for a more detailed understanding of the muzzle flow and the 
blast overpressure fields. 

The flow from the muzzle of a gun consists of two impulsive jets 
[Figure 1). The air being forced out ahead of the projectile creates the 
first flow, called the precursor flow. As the projectile exits the gun tube, 
the high pressure, propellant gases are released creating a second, propellant 
gas flow. This flow rapidly overtakes and effectively consumes the much 
weaker precursor flow. 

A variety of research projects have already been carried out to investi- 
gate the previously mentioned problems.  In a series of optical experiments, 
Schmidt and Shear1 characterized the muzzle flow around small caliber weapons. 
Erdos and Del Guidice2 have developed a spherically symmetric model which 
calculates flow properties along the axis of symmetry. Their model assumes 
a core flow that is prediced by a steady method of characteristics calcula- 
tion and then uses a finite difference technique to calculate the propagation 
of the shock layer between the jet Mach disk and the blast wave. Westine3, 
Smith1*, and Schmidt5 have each presented a scaling law used to predict over- 
pressures in the muzzle blast field.  Pansier6 extends the scaling law of 
Smith to incorporate a more general range of weapons. 

1. E.  M.   Sahmidt and D.   D.  Shear,   "Optical Measurements of htuzzle Blast," 
AIM Journal,   Vol.   13,  No.   8,  August 1975,  pp. 1086-1091. 

2. J.  Erdos and P.  Del Guidiae,   "Calaulations of Muzzle Blast Flow Fields," 
AIAA Journal,   Vol.   13,  No.   8,  August 1975,  pp. 1048-1056. 

3. P.   Westine,   "The Blast Field About the Muzzle of Guns," Shook and 
Vibration Bulletin,   Vol.   39,  Part 6,  March 1969. 

4. F.   Smith,   "A Theoretical Model of the Blast from Stationary and Moving 
Guns," 1st International Symposium on Ballistics,  Orlando,  FL,  November 1974, 
sponsored by American Defense Preparedness Association,   Washington,  D.C. 
20005. 

5. E.  M.  Schmidt,   G.   D.  Kahl,  and D.  D.  Shear,   "Gun Blast:  Its Propagation 
and Control," AIAA Paper 80-1060,  June 1980. 

6. K.  S.  Fansler and G.  Keller,   "Variation of Free-Field Muzzle-Blast with 
Propellant Type," 6th International Symposium on Ballistics,  Orlando, 
FL,  October 1981,   sponsored by American Defense Preparedness Association, 
Washington,  D.C.     20005. 



In a paper by Schmidt, Kahl, and Shear5, it is suggested that the 
precursor flowfield affects the development of the propellant blast field. 
The present report presents a more detailed look at the interaction between 
the precursor and the propellant gas flows.  By evacuating the gun tube ahead 
of the projectile, the precursor is eliminated. Comparison of these firings 
with normal or ambient conditions permits the isolation of the influence of 
the precursor flow. The near field is observed through a series of spark 
shadowgraphs while far-field data is acquired with static or side-on pressure 
transducers. The experimental results are compared with the scaling relations 
of Schmidt5 and Fansler6. Additionally, a separate development is presented 
which extends the results of Erdos2 away from the axis of symmetry. 

II.  TEST INSTRUMENTATION AND TECHNIQUE 

The weapon fired in this program is a 20mm cannon (Figure 2) which has 
a barrel length of 1.52m, a chamber volume of 41.7cm3 and a twist of rifling 
of one turn in 25 calibers. An M55A2 training round weighing 98g and having 
a L/D of 3.75 is used.  The propellant fired is WC870 which has the following 
properties: 

RT , = 9.87 x 105 m2/s2 
ad 

Y = 1.24 

Rounds are fired at reduced charges to obtain a range of exit conditions, 
summarized below: 

Ve(m/s) 

280 

610 

1060 

To investigate the effects of the tube gases ejected prior to projectile 
separation, the gun tube is evacuated before firings, thus effectively 
eliminating the precursor flow. Placing a mylar diaphragm across the muzzle 
and an "0" ring around the projectile forward of the rotating band allows the 
gun tube to be evacuated to below S0\m  of Hg before firing. 

Static pressure transducers placed along rays of 10°, 45°, 90°, 135 , 
and 170° measure the pressure pulses in the blast field.  A spark shadow- 
graph technique1 permits the observation of the muzzle flowfield. However, 
optical and transducer surveys are made separately to minimize the effect 
of reflecting from the Fresnel lens. Approximately three rounds are fired 
at each set of pressure transducer locations.  Data is acquired for both the 
ambient and evacuated tube cases. 

III.  MUZZLE FLOW ANALYSIS 

As previously mentioned, the muzzle flow development is observed through 
a series of spark shadowgraphs. The early development of the flow is 

m  i c :g) 

3, .6 

17 ,8 

38 .9 
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portrayed in Figure 3. The projectile has just separated from the gun bore 
and the high pressure propellant gases are escaping.  For the atmospheric 
case (Figure 3a), the precursor flow is clearly portrayed and the development 
of the blast caused by the propellant gases has been slowed due to its sub- 
mergence in the hot and turbulent gases of the precursor flow.  By contrast, 
the evacuated case (Figure 3b), shows that the precursor has been almost 
completely eliminated.  What remains appears to have little influence on the 
development of the main blast. 

In Figures 4 and 5, the development of the blast wave can be seen. The 
atmospheric case. Figures 4a and 5a, clearly shows the effect of the precursor 
on the development of the blast in the axial direction. The blast wave is 
propagating into a preconditioned medium with a high velocity and a higher 
temperature, which allows the forward portion of blast to move out more 
rapidly than the lateral portions. This creates a nonspherical shape as 
opposed to the more spherically symmetric blast for the evacuated case 
(Figures 4b and 5b). 

Finally, in Figure 6 the blast wave is fairly well developed and for the 
atmospheric case the blast wave is about to overtake the precursor wave 
(Figure 6a), As the blast wave overtakes the precursor wave it becomes 
fully developed and rapidly approaches the shape corresponding to the evacuated 
case (Figure 6b). 

IV,  BLAST FIELD ANALYSIS 

The effect of evacuating the tube can be seen in Figure 7, The peak 
overpressures along a (j) = 10° radial described by 

Ap = Cp-Pj/P^ (1) 

are plotted for both atmospheric and evacuated conditions fired at a projectile 
velocity, V = 1060m/s. At locations near the muzzle, higher overpressures 

are obtained for rounds fired from an evacuated gun tube.  Indicating that, 
in the ambient firings, interactions between the expanding propellant gas 
and the precursor flow cause an attenuation in the strength of the air shock. 
Further from the muzzle (R/D > 30), the overpressure levels are indistinguisha- 
ble. 

The pressure data taken with the ambient tube (Figure 7) displays a 
number of interesting features which may be correlated with properties 
of the flow field through observation of the spark shadowgraph sequences. 
Between 5 and 10 calibers from the muzzle, the overpressure profile has a 
local minimum.  At 5 calibers the propellant gas wave is still immersed in 
the supersonic core of the precursor jet; however by 7.5 calibers, the blast 
wave moves outside of the supersonic core. Within the precursor jet, the 
propellant gas is expanding into an ambient with a high wave speed in the 
axial direction.  This reduced the strength of the shock developed ahead of 
the propellant gas/air interface. However, once the propellant gas expands 
through the precursor jet, the nature of the surroundings change. The 
expansion now occurs in a relatively quiescent, lower wave speed ambient 
with a resultant increase in shock strength as the interface is penetrated. 



Beyond 10 calibers, the pressures for the atmospheric case become 
larger than those for the evacuated case. A possible explanation for this 
behavior is that at this location, the blast generated by the release of the 
propellant gases coalesces with the precursor blast.  In both the evacuated 
and ambient data, a local maximum in overpressure is observed at R/D = 22.5. 
This is due to an interaction between the air blast and projectile shock 
system as the round moves free of the decelerating blast. 

Figure 8 presents a similar set of data for a 9 = 45° radial. The 
precursor has little effect on the blast overpressures.  Peak overpressures 
along a ({) = 90° radial are presented in Figure 9.  In this case, effects of 
the precursor do not appear significant. The data indicates that, as would 
be expected, the influence of the precursor flow is greatest near the line 
of fire and confined to the region close to the muzzle. However, since most 
existing analytical and numerical treatments of the muzzle flow do not include 
the precursor/propellant gas interaction, it is important to be aware of this 
phenomena when making comparisons between theory and experiment. Theory 
would produce a description of a flow field more nearly corresponding to the 
current evaluated tube data and should tend to over-predict blast pressure 
in the near field.  Such over-predictions may not be a serious problem.  If 
used to describe peak pressure levels on a muzzle device, the analysis would 
produce a built-in safety factor for the estimation of stress levels.  In 
the far field, where crew members are present, the analysis and experiment 
should show minimal sensitivity to precursor effects. 

V.  MUZZLE BLAST MODELING 

In this section, the measured blast overpressure properties of the 
20mm cannon are compared with existing analyses2'5'5.  The numerical 
calculations of Erdos and Del Guidice^ describe the muzzle flow in a region 
close to the axis of symmetry.  In the present comparison, the predicted 
variation of pressure along the axis is swung to different rays by using the 
scaling law of Smith1*. 

Smith presents the following expression for the variation of scale 
length with the azimuthal angle, $: 

— = f cos $+   (1 - f2 sin2(j))^ (2) 

Smith develops this relationship from an analogy between the blast from a gun 
and that from a moving explosion.  The value c' is in effect a stretched 
reference length, whereas c is the representative length of the gun. The 
parameter f is calculated from the best fit between c' and <£. The values of 
c' were calculated from data given by Schmidt5 and the following equation 
given by Smith4. 

—      4/3 
Ap a (C) ^ (3] 

For the 20mm gun used in these tests, f is determined to be 0.79. 

10 



The results of these calculations along a 10° ray are presented in 
Figure 10a. The predictions give reasonable results for locations greater 
than 12.5 calibers. Also, as expected, the predictions in the near field 
tend to agree with the evacuated tube data since the numerical calculation 
does not account for the effects of the precursor.  Figure 10b presents a 
similar set of results for a 90° ray.  In this instance, the procedure results 
in predictions which are reasonable for the reduced velocity cases but do 
not agree well for V = 1060m/s. 

m 

Schmidt5 suggests method for predicting the blast overpressure which 
uses the stabilized position of the Mach disk, x , as a reference length. 

ns 6 

Schmidt gives the following equation for the variation in overpressure 

where 

Ap = 0.975 S/r'1,1 (4) 

2 l 

.8 cos(f)+ (1 - .64 sin 402 (5) 

r/x f61 ns ^  J 

A comparison of Schmidt's predictions using the measured position of the 
Mach disc5 is presented in Figure 11. While obtaining general agreement with 
measurement, the scaling technique tends to over-predict pressure levels. 

'Fansler and Keller5 have developed a predictive scheme based on the 
work of Smith1* which permits calculation of blast overpressure contours 
once the interior ballistic performance of the weapon is determined. The 
basic relation describing overpressure is 

A^ = F (c'/c)/(r/t)l} (7) 

where c'/c is given by Smith's expression for the variation in scale length 
with polar angle. Equation (2), and, for best agreement, F and n are found 
to be 1.65 and 1 respectively. The scale length is given as 

A -W- 
D  f 1 

EM 
P 

00 CU - nc) p^ [l+c/3m ] C8) 

where M = V /a  U is the volume of the chamber plus bore volume, c is 

the mass of the propellant charge, and m is the mass of the projectile if 

friction is taken into account.  The covolume, n, is approximated by the 
value 1.2 x 10 3 m3/kg.  Further, the quantity E, the original internal 
energy minus the kinetic energy of the projectile and propellant and the 
heat losses to the surroundings is 

BCRT 

E =  - 2 (mi + c/^ (1+x3 V (9) 

Y-l " 

11 



where B is the percent of propellant burnt and x is the ratio of heat 
losses to the kinetic energy. Combining these expressions with Equation (7), 
yields the final equations for overpressure with sonic exit flow 

— 9 - FM 
—      0.165[0.8  cos  9  +   (1-0.64  sin     6  )2]  p  nm AP ^  iVD (U-nc)  pJl+c/CSm^] UUJ 

and with supersonic exit flow 

rs = 0.94 py {1 + [l+c/CSm^] c V 2}/(2E)        (11) 

Comparison of the predictions with experimental data shows that good agreement 
is obtained although the predicted rate of decay of overpressure in the far 
field is somewhat greater than measurements. 

VI.  CONCLUSIONS 

A set of data has been taken to investigate the precursor/propellant 
gas interactions.  It is shown that the precursor seems to have a significant 
effect on the muzzle flow near the gun bore axis, but this effect decreases 
with azimuthal angle.  In the far field, the precursor has no measured effect 
on the blast field. 

Three techniques for predicting blast overpressures are compared with 
experimental results. The method proposed by Pansier gives good agreement 
with the data, requires minimal effort, and is sensitive to changes in 
weapon ballistics. 
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Figure 2.    Experimental   Instrumentation 
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a. Atmospheric Tube 

b. Evacuated Tube 

Figure 3. Comparison of Muzzle Flow Development - Example 1 
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a. Atmospheric Tube 

b. Evacuated Tube 

Figure 4. Comparison of Muzzle Flow Development - Example 2 
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a. Atmospheric Tube 

b. Evacuated Tube 

Figure 5. Comparison of Muzzle Flow Development - Example 3 
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a. Atmospheric Tube 

b. Evacuated Tube 
Figure 6. Comparison of Muzzle Flow Development - Example 4 
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c scale length 

c' stretched scale length 

e specific energy 

p pressure 

p^ atmospheric pressure 

Ap overpressure 

r radial location 

R gas constant 

T . adiabatic flame temperature 
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